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Abstract: Large amounts of flue gas desulfurization (FGD) and fluidized bed combus-

tion (FBC) by-products from burning coal, consisting primarily of gypsum, are

available for potential use as a soil amendment. However, information is limited on

longer-term changes in chemical and physical properties induced over time and over

small depth increments of the upper soil profile after applying these amendments.

This study examined longer-term effects in an abandoned Appalachian pasture soil

amended with various liming materials and coal combustion by-products (CCBPs).

Soil chemical and physical properties were investigated over time and depths.
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The results indicated limited dissolution and movement of the calcium (Ca) and

magnesium (Mg) applied with the chemical amendments, except for Ca and Mg associ-

ated with sulfate. However, sufficient dissolution occurred to cause significant

increases in exchangeable Ca and Mg and decreases in exchangeable Al that were

reflected in corresponding increases in soil pH. These beneficial effects persisted

over time and were confined to the upper 0- to 15-cm depth of the profile. The

greatest benefits appeared to be in the upper 0- to 5-cm surface layer. Both Ca and

Mg applied as calcitic dolomitic limestone tended to be immobilized in the upper 0-

to 5-cm layer of the soil profile; Ca more so than Mg. The presence of S applied in

the FGD and FBC amendments appeared to enhance the mobility of Ca and Mg.

The ratio of Ca/Mg in HCI extracts from the calcitic dolomitic treatment was close

to that of applied calcitic dolomite, implying that the inactive component in soil

might be the original calcitic dolomite particles. Soil physical properties measured

over small depth increments showed that application of the amendments improved

the saturated hydraulic conductivity only in the upper 0- to 5-cm depth and had little

or no significant effect on the dry bulk density and plant-available water.

Keywords: Gypsum, limestone, soil Ca and Mg mobility, soil chemical/physical
properties

INTRODUCTION

Limited soil nutrient availability and water deficits can restrict cool-season

forage plant productivity on the relatively shallow and eroded pasture soils

that are common in much of the Appalachian region (Belesky et al.2002).

In these acidic soils (pH , 5.5), the existence of mineral element toxicities

[e.g., aluminum (Al) and manganese (Mn)] and deficiencies [e.g., phosphorus

(P), calcium (Ca), magnesium (Mg), potassium (K), and boron (B)] limit

growth of pasture species. In addition, soil compaction from grazing

activity can negatively influence many soil physical properties (e.g., bulk

density and hydraulic conductivity) and ultimately the growth, development,

and productivity of pasture swards. Because of these chemical and physical

constraints, unamended Appalachian pastures do not produce sufficient

forage to adequately sustain the nutritional needs of most grazing animals.

Nutrient imbalances and occasionally physical constraints (e.g., crusting,

infiltration, and aggregate stability) in soil can be alleviated through addition

of chemical amendments. Limestone [CaCO3 or CaMg(CO3)2] is commonly

surface applied to hilly pastures and hayfields to increase soil pH and

provide Ca and Mg for plant growth. However, movement of Ca to deeper

layers from surface-applied limestone is slow unless very high rates are

applied (Brown et al. 1956).

Calcium from gypsum products is generally more soluble than Ca from

limestone and may more readily leach to subsoils (Ritchey et al. l995).

Gypsum also acts as a source of S to plants. Gypsum does not neutralize

soil acidity the way that limestone and calcium hydroxides do, but it can

X. Zhou et al.1248
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have some minor benefits in overcoming growth restriction associated with

low soil pH. Aluminum toxicity, a widespread problem in acidic soils that

inhibits root growth and nutrient uptake, can be partially alleviated by appli-

cation of gypsum because it increases exchangeable Ca:Al ratios (Wendell

and Ritchey 1996). In addition, gypsum can bring about changes in physical

characteristics of some high Mg or sodium (Na) soils by decreasing surface

crusting, enhancing water infiltration, and keeping soil aggregated, and

these conditions can indirectly benefit other soil physical properties (Wong

and Ho 1991; Iiyas, Miller, and Qureshi 1993). However, there are few

reports about the effects of gypsum on physical properties of Appalachian

region soils not affected by high Na or Mg concentrations.

Large amounts of coal combustion by-products (CCBPs), declared

nonhazardous wastes by the U.S. Environmental Protection Agency, are

increasingly available in the eastern United States. Gypsum in FGD is rela-

tively pure compared to mined agricultural gypsum. It is composed mainly

of Ca sulfate and carbonate, and has been applied to acidic soils as a soil

amendment. The fludized bed combustion by-products (FBCs) consist of

mixtures of Ca sulfate, sulfite, oxide, hydroxide, and carbonate plus bottom

ash and other materials that can increase soil pH (Zaifnejad et al. 1996) and

reduce Al toxicity in acidic subsoil layers (Wendell and Ritchey l996).

These by-products have been shown to benefit shoot and root growth and

yields of several pasture species grown on acidic soils (Clark et al. 1995),

although they may be classified as hazardous waste because they have pH

values greater than 12. Information is limited on long-term changes in soil

chemical and physical properties occurring over small depth increments of

acidic hayfield soils after amendment with CCBPs. The overall objective of

this study was to examine longer-term effects of application of different

CCBPs on upper soil profile chemical and physical properties in an

abandoned Appalachian hayfield. Specific objectives were 1) to determine

how exchangeable Ca, Mg, Al, sulfur (S), and pH changed over time in the

0- to 15-cm and 15- to 30-cm layers of the soil profile following the appli-

cation of traditional liming materials and CCBPs, and 2) to determine differ-

ences in the effect of traditional liming materials and CCBPs on these same

chemical properties, dry bulk density (rb), saturated hydraulic conductivity

(Ksat), and plant-available water (PAW) over small depth increments of the

soil profile.

MATERIALS AND METHODS

Samples were collected fiom a larger experiment installed on a site (Gilpin silt

loam) in southern West Virginia (378 480 4500 N, 808 580 4500 W) that was con-

sidered representative of abandoned pastures in the Appalachian region

(Ritchey and Snuffer 2002). This experiment was conducted on a well-

drained hillside with 8 to 15% slopes. It had been abandoned for three

Upper Profile Changes in an Appalachian Hayfield 1249
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decades and then rotary mowed annually for 10 years but was not otherwise

used for fodder or grazing. Grasses of low nutritive value, primarily red

fescue (Festuca rubra L.), poverty grass (Danthonia specata L.), and broom

sedge (Andropogon virginicus L.), covered 28% of the site. It was estimated

that 66% of the site was covered by broadleaf weeds with goldenrod

(Solidago juncea Ait.) being the most prevalent.

Plots (8 � 3m) were laid out in 1993 (Ritchey and Snuffer 2002). In July

1993, fertilizer (27 kg ha21 N, 132 kg ha21 P, and 132 kg ha21 K) was surface

applied to each plot. Combinations of calcitic dolomitic limestone (DL),

CCBPs (FGD-22 and FBC-26), and a lightly calcined magnesite MgO fertili-

zer (Fert-o-Mag, American Minerals, Wilmington, DE)1 as specified in

Table 1 were surface applied at the same time. Chemical properties of the

amendments (Clark et al. 1995) used are given in Table 2. The experimental

design war a randomized complete block with four replications.

Fertilizer amounts (kg ha21) subsequently surface applied were 38N in

1994; 97N, 99 P, and 221 K in 1995; 237N, 28 P, and 54 K in 1996; and

223N, 59 P, and 112 K in 1997. Nutrient sources used were NH4NO3, KCl,

triple superphosphate, and 19–19–19, 0–25–25, and 5–20–20 fertilizers.

The check plots received only NPK fertilizer.

In April 1994, the area was rotary mowed and then sod-seeded with orch-

ardgrass (Dactylis glomerata cv. Potomac) at 8.7 kg ha21, Kentucky bluegrass

(Poa pratense cv. Canvy) at 3 kg ha21, and tall fescue (Festuca arundinacea

cv. KY31) at 10.9 kg ha21 using a Brillion seeder (Brillion Iron Works, Inc.,

Brillion, WI) to simulate frost seeding. Because these species did not establish

well, the area was reseeded July 1994 with a no-till pasture renovator using

rates of 13.4 kg ha21 orchardgrass (cv. Abel), 10.5 kg ha21 KY 31 tall

fescue, and 4.3 kg ha21 Canvy bluegrass. To improve stands, another

Table 1. Combinations of amendments applied to experimental plots in 1993 and the

amounts of nutrient elements added

Treatment

DL FGD-22 FBC-26 MgO TNE Ca Mg S

(Kg

ha21)

(Kg

ha21)

(Kg

ha21)

(Kg

ha21)

(Kg

ha21) (g m22) (g m22) (g m22)

Check 0 0 0 0 0 0 0 0

DL 4650 0 0 0 4840 97.7 51.2 0

MgO 0 0 0 526 1290 0 26.8 0

FGDþDL 4650 16,000 0 0 5640 478.5 51.6 345.6

FGDþMgO 0 16,000 0 526 2090 380.8 27.2 345.6

FBCþMgO 0 0 15,000 526 9540 619.3 32.3 261.0

1The mention of trade or manufacturer names is made for information only and does

not imply an endorsement, recommendation, or exclusion by USDA-ARS.
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seeding was made in February 1995 with 19.7 kg ha21 Abel orchardgrass and

20.9 kg ha21 KY 31 tall fescue, and in March 1995 with 14.1 kg ha21 Canvy

bluegrass. Because the stand was still poor, dicamba (dimethylamine salt of

2-methoxy-3, 6-dichloro-0-anisic acid) herbicide was applied on May 24

and July 10, 1995 at 7.0 liter ha21 to reduce broadleaf growth.

As described in Ritchey, Belesky, and Halvorson (2004), the 8 � 3m

plots were subdivided into three equal 2.7-m-wide subplots in early spring

1998 for seeding clovers into the experiments as 1) no additional planting,

2) red clover (Trifolium pratense cv. Cinnamon), and 3) white clover

(Trifolium repens cv. Huia). Surface applications of 0–25–25 fertilizer to

supply 112 kg ha21 P and 213 kg ha21 K were made in April 1998 and

April 1999.

Soil samples for chemical analyses were collected from 0- to 15-cm and

15- to 30 cm depths of each plot using a 2.5-cm-diam. soil sampler in either

August or September of 1994 through 1997. In August 1999, similar

samples were collected from the 0-to 2.5-, 2.5- to 5.0-, 5- to 10-, and 10- to

15-cm depths. In September of 1999, three polyvinyl chloride (PVC)

sampling tubes 5 cm in diameter were driven into the soil in each plot using

a specially designed attachment to the hydraulic power system on a tractor.

The soil-filled tubes were removed, taken to the workshop, and cut into appro-

priate depth increments to determine treatment effects on soil physical prop-

erties at various soil depths. One set of tube samples was cut into 5-cm

depth intervals. Dry bulk density and Ksat determined in these samples. The

second set of tube samples were cut into 2.5-cm depth intervals and used to

determine PAW. In addition, four tube samples were taken in each replication

of the experimental field. These were cut into 0- to 5-, 5- to 10-, 10- to 15-, 15-

to 22.5-, 22.5- to 30-, and 30- to 45-cm intervals for particle size analysis using

the pipette method (Gee and Bauder 1986).

Yield was evaluated by clipping a 4.3m2 (in 1994 to 1997) or 1.6m2 (in

1998 and 1999) area in the center of the subplots at the 5-cm height. Forage

dry matter percentages were determined from oven-dried samples. Plant

mineral analyses were conducted as described (Ritchey and Snuffer 2002).

Table 2. Chemical properties of amendments

Amendment

Ca

(g kg21)

Mg

(g kg21)

S

(g kg21)

CaCO3

equivalent g

per 100 g soil

pH (1:1

water)

EC (1:1 water)

(dS m21)

DL 210 110 0 104 8.9 0.03

MgO 0 510 0 245 — —

FGD-22 238 0.23 216 5 8.9 1.67

FBC-26 414 3.65 174 55 12.4 6.18

Note: From Clark et al. (1995) and Ritchey and Snuffer (2002).

Upper Profile Changes in an Appalachian Hayfield 1251
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A 1:1 (w:w) suspension of soil with 0.01M CaCl2 was used to measure

pH. Exchangeable Ca, Mg, and S were measured in an extract with neutral

1 M NH4Oac (Thomas 1982). An estimate of nonexchangeable Ca, Mg, and

S was obtained by shaking soil with 0.1M HCl at 1 soil:20 HCl ratio

for 36 h. Aluminum was measured in 1M KCl extracts (Barnhisel and

Bertsch 1982). Elemental analyses were conducted by inductively coupled

plasma emission spectroscopy (SpectroFlame Modula Tabletop ICP,

Spectro Analytical Instruments, Inc.).

Ksat was determined using the constant head method (Klute 1967a). The

soil cores were saturated for at least 24 h prior to measurement. A constant

head level of 20 cm was applied, and the core was allowed to drain freely

until a steady discharge rate was observed at the outlet. Hydraulic conductivity

of samples were recorded as zero if no discharge was observed 30 min after the

head was applied. After steady flow was achieved, the Ksat was calculated

using Darcy’s law as Ksat ¼ (Q/At) (L/DH) where Q is the discharge

volume of effluent (cm3) obtained in time t hours; A is the cross-sectional

area of the sample, L is the length of the sample, and DH is the hydraulic

head difference. Bulk density was determined on the same core sample used

to measure hydraulic conductivity (Blake 1967).

Water retentions at tensions of 0.03 and 1.5MPa (1/3 and 15 bars) were

determined on the 2.5-cm-long soil cores using a membrane-measuring

method (Klute 1967b). The soil core and pressure plates were saturated for

12 h before placing them into the pressure chamber. Samples were allowed

to equilibrate, and the volumetric water content at each pressure was deter-

mined by weighing. The differences between the volumetric water contents

at 0.03 and 1.5MPa taken as PAW.

Analysis of variance of the soil physical and chemical data was performed

using the procedures in the general linear model of SAS (1990). Least signifi-

cant difference (LSD) was used to separate means (P . 0.05).

RESULTS AND DISCUSSION

Upper Profile Changes over Time and over Small Depth Increments

Results of particle size analysis (Table 3) showed that coarse and medium

sand and silt fractions dominated the soil texture for the experimental field.

The USDA textural grouping was a silt loam for all depths. As would be

expected, the coarser fractions (sands and coarse silt) decreased and the

finer fractions increased with depth. However, coarser fractions apparently

reached a minimum, and correspondingly, finer fractions reached a

maximum at the 22.5- to 30-cm depth.

Tables 4 and 5 summarize the effects of application of the amendments on

soil pH and exchangeable Ca, Mg, Al, and S in the 0- to 15-cm and 15- to 30-

cm depth samples taken from 1994 though 1997. In addition, means of the

X. Zhou et al.1252
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values for samples taken over the four small depth increments in 1999

(Table 6) were calculated, taking into account bulk density of each layer

(included in Table 4) for comparison with values reported for the 0- to

15-cm depth samples taken over time from 1994 through 1997.

These data indicate that application of the amendments generally increased

soil pH, that the increases tended to be proportional to the total CaþMg and

total neutralizing equivalent (TNE) of amendments applied per unit area

(Table 1), that their effect persisted over time, and that the increases were

more pronounced in the 0- to 15-cm depth interval. This last effect is illustrated

by the following examples. The treatment with 526 kg ha21 MgO applied alone

(treatment MgO) increased pH in the 0- to 15-cm depth interval by about 0.2 to

0.3 units over time but had a negligible effect in the 15- to 30-cm depth. The

application of 15,000 kg ha21 FBC in combination with MgO produced a

large pH increase in the 0- to 15-cm depth (about 1.2 to 1.7 pH units) but

only about 0.1 to 0.2 pH units in the 15- to 30-cm depth.

These effects on pH were inversely mirrored in the effects on exchange-

able Al. Exchangeable Al concentrations decreased the most in the

FBCþMgO application and the least when MgO was applied alone. The

levels of exchangeable Al were lower in the 0- to 15-cm compared to

the 15- to 30-cm depth interval. Interestingly, although the total CaþMg

applied with the 4650 kg ha21 DL was almost three times less than the total

applied with the 16,000 kg ha21 FGDþ 526 kg ha21 MgO, the decreases in

exchangeable Al were similar. This indicated that the increase in pH and

depression of exchangeable Al did not depend entirely on the total amounts

Table 3. Soil texture of experimental plots (USDA classification)

Size

fraction

0–5 cm 5–10 cm 10–15 cm 15–22.5 cm 22.5–30 cm 30–45 cm

% Size fraction for depth interval

VCS 2.9 3.5 1.5 1.8 2.1 3.2

CS 13.7 7.0 5.3 2.9 2.7 6.9

MS 12.7 5.6 4.3 2.5 2.0 5.2

FS 8.7 4.3 3.3 2.6 2.2 4.2

VFS 6.5 4.6 4.6 3.4 4.8 6.0

Total

sand

44.5 24.7 19.0 13.2 13.8 25.3

CSi 12.5 14.9 10.5 12.2 14.5 15.6

MSi 27.3 36.9 38.6 36.0 30.4 29.8

FSi 9.1 12.8 17.3 15.6 18.1 11.3

Total slit 48.8 64.5 66.4 63.8 63.1 56.7

Clay 6.7 10.9 14.7 23.0 23.1 18.0

Note: VCS, very coarse sand; CS, coarse sand; MS, medium sand; FS, fine sand;

VFS, very fine sand; CSi, coarse silt; MSi, medium silt; FSi, fine silt.

Values represent mean of four replications.

Upper Profile Changes in an Appalachian Hayfield 1253
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Table 4. Treatment effects over time on soil profile pH and Ca, Mg, Al, and S recovered in CEC extracts from 0- to 15-cm depth samples

Property Year Check DL MgO FGDþDL FGDþMgO FBCþMgO LSD0.05

pH 1994 3.90 4.39 4.09 4.40 4.37 5.11 0.24

1995 3.81 4.27 4.10 4.42 7.22 5.09 0.18

1996 4.03 4.52 4.20 4.64 4.38 5.05 0.19

1997 3.87 4.49 4.09 4.60 4.34 5.53 0.33

LSD0.05 0.11 0.14 0.13 0.29 0.15 0.41

cmolc kg
21 soil

Ca 1994 1.15 2.36 1.03 9.03 3.81 11.49 2.15

1995 1.21 2.39 1.13 5.36 3.93 11.71 3.10

1996 1.11 2.63 0.89 3.60 3.09 7.27 1.01

1997 1.12 2.61 1.16 3.83 2.83 10.84 2.87

LSD0.05 0.15 0.69 0.29 2.51 0.68 5.38

Mg 1994 0.28 1.22 0.75 0.37 0.90 0.28 0.41

1995 0.26 1.20 1.27 0.57 0.35 0.39 0.25

1996 0.20 1.12 0.93 0.65 0.79 0.26 0.27

1997 0.17 1.02 1.00 0.67 0.71 0.30 0.25

LSD0.05 0.04 0.44 0.26 0.20 0.34 0.16

Al 1994 2.77 1.72 2.23 1.13 1.87 0.51 0.78

1995 2.77 1.41 2.14 1.14 1.51 0.25 0.69

1996 2.35 1.29 2.00 0.83 1.34 0.26 0.55

1997 3.09 1.43 2.59 1.10 1.63 0.20 0.60

LSD0.05 0.37 0.67 0.49 0.37 0.93 0.38

S 1994 0.38 0.40 0.37 5.86 3.22 3.37 2.31

1995 0.35 0.36 0.33 1.68 1.22 2.71 0.90

1996 0.30 0.36 0.31 0.64 0.73 1.21 0.14

1997 0.25 0.29 0.32 0.45 0.48 0.89 0.31

LSD0.05 0.05 0.04 0.13 2.50 1.74 1.20
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Table 5. Treatment effects over time on soil profile pH and Ca, Mg, Al, and S recovered in CEC extracts from 15- to 30-cm depth samples

Property Year Check DL MgO FGDþDL FGDþMgO FBCþMgO LSD0.05

1994 3.83 3.99 3.89 4.11 4.12 4.06 0.12

1995 3.75 3.82 3.81 3.92 3.96 3.91 0.08

1996 3.91 3.91 3.98 4.04 4.07 4.01 0.12

1997 3.83 3.90 3.87 3.99 4.01 3.95 0.09

LSD0.05 0.15 0.11 0.13 0.14 0.12 0.08

(cmolc kg soil21)

Ca 1994 0.59 0.72 0.54 2.55 2.27 2.95 1.09

1995 0.68 0.61 0.64 2.17 2.00 1.69 0.51

1996 0.63 0.62 0.60 1.71 1.56 1.45 0.28

1997 0.59 0.79 0.61 1.53 1.42 1.53 0.51

LSD0.05 0.17 0.34 0.15 0.32 0.2 1.31

Mg 1994 0.14 0.28 0.25 0.14 0.26 0.18 0.13

1995 0.17 0.23 0.24 0.12 0.11 0.15 0.08

1996 0.14 0.21 0.23 0.08 0.08 0.11 0.04

1997 0.13 0.19 0.25 0.08 0.08 0.08 0.05

LSD0.05 0.05 0.05 0.09 0.03 0.15 0.05

Al 1994 4.09 4.00 3.94 3.23 3.59 3.53 0.75

1995 4.45 3.86 4.19 3.87 3.01 3.96 0.63

1996 3.69 3.41 3.43 3.01 2.66 3.23 0.68

1997 3.96 3.88 3.97 3.61 3.14 3.58 0.68

LSD0.05 0.26 0.54 0.49 0.47 1.24 0.66

S 1994 0.51 0.53 0.55 2.07 1.81 1.75 0.53

1995 0.53 0.53 0.49 1.71 1.48 1.10 0.33

1996 0.53 0.59 0.51 1.19 1.13 1.14 0.26

1997 0.47 0.52 0.44 0.99 0.96 0.97 0.17

LSD0.05 0.11 0.12 0.09 0.25 0.13 0.71
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Table 6. Treatment effects on soil profile pH and Ca, Mg, Al, and S recovered in CEC extract on small increment samples taken in 1999

Property Depth (cm) Check DL MgO FGDþDL FGDþMgO FBCþMgO LSD0.05

pH 0–2.5 4.0 5.2 4.4 5.3 4.6 6.0 0.3

2.5–5 3.9 4.3 4.1 4.5 4.3 5.2 0.3

5–10 3.9 4.1 4.1 4.3 4.1 4.4 0.2

10–15 3.9 4.1 4.1 4.2 4.2 4.2 0.2

(cmolc kg
21 soil)

Ca 0–2.5 2.24 6.56 3.59 8.98 4.90 12.76 3.21

2.5–5 0.72 1.64 1.28 3.28 1.84 5.16 1.75

5–10 0.46 0.64 0.50 1.76 1.04 1.76 0.91

10–15 0.36 0.48 0.44 1.32 0.78 1.27 0.50

Mg 0–2.5 0.35 1.41 1.19 1.26 1.12 0.41 0.46

2.5–5 0.13 0.58 0.63 0.47 0.42 0.17 0.19

5–10 0.08 0.32 0.36 0.22 0.22 0.07 0.13

10–15 0.07 0.27 0.37 0.14 0.15 0.05 0.11

Al 0–2.5 2.00 0.13 0.82 0.30 0.55 0.11 0.58

2.5–5 3.10 1.91 2.14 1.32 1.66 0.24 1.00

5–10 3.12 2.85 2.76 2.25 2.46 2.09 0.95

10–15 3.22 3.25 3.09 2.59 2.79 3.00 0.79

S 0–2.5 0.19 0.07 0.13 0.09 0.11 0.17 0.06

2.5–5 0.21 0.15 0.19 0.15 0.17 0.13 0.08

5–10 0.22 0.21 0.19 0.28 0.29 0.31 0.06

10–15 0.28 0.27 0.30 0.40 0.43 0.42 0.12

Note: Values for check, DL, and FBCþMgO were presented by Ritchey et al. (2004).
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of CaþMg but upon the source. The DL amendment is high in carbonates,

MgO is high in oxides, and FBCs contain carbonate, oxide, and hydroxide.

These anions are capable of neutralizing acidity. On the other hand, gypsum

contains mainly sulfate, which has essentially no ability to neutralize

acidity. The total neutralizing equivalent of the amendments is based on the

anions present and thus is high for amendments with oxides and carbonate

and zero for Ca sulfate. Accordingly, the change in mean pH for 0- to 15-

cm for 1994 through 1997 was more closely related to amendment TNE

(r2 ¼ 0.95, P ¼ 0.001, n ¼ 6) than to amendment total CaþMg (r2 ¼ 0.74,

P ¼ 0.03, n ¼ 6).

The greater effects of the applied amendments on upper profile soil pH and

exchangeable Al compared to the 15- to 30-cm layers indicated that effects of

the amendments were relatively immobile. This was supported by the ratios

given in Table 7, which indicates that the amounts of exchangeable cations

tended to be several times higher in the 0- to 15-cm than in the 15- to 30-cm

depth interval (Table 7). Nevertheless, some movement of both elements to

the deeper depth did occur because exchangeable Ca and Mg in the 15- to

30-cm depth interval were generally higher than the corresponding values in

the check plots (Table 5). The behavior of this downward movement over

time varied with the source. For example, the exchangeable Ca levels in

both depth intervals tended in decrease over time in the treatments receiving

gypsum (FGDþDL and FGDþMgO), indicating that Ca was being lost

from both layers (Tables 4 and 5). Magnesium in the 15- to 30-cm depth

also tended in decrease in all the CCBP amendment treatments. On the other

hand, the Ca and Mg contents in both layers were almost unchanged over

time in the DL treatment (Tables 4 and 5), which indicated the low solubility

and mobility of the limestone used in this experiment. In fact, the Ca level in

the 15- to 30-cm layer for DL treatment was very close to the check (Table 5).

The reason for the behavior of exchangeable Ca and to a lesser extent Mg

over time in the CCBP amendment treatments was probably due to the

mobility induced by S applied with the CCBP amendments. For these

Table 7. Ratios of Ca and Mg in 0- to 15-cm layer to those in 15- to 30-cm layer

Property Year Check DL MgO

FGDþ

DL

FGDþ

MgO

FBCþ

MgO

Ca 1994 1.95 3.28 1.91 3.54 1.68 3.89

1995 1.78 3.92 1.77 2.47 1.97 6.93

1996 1.76 4.24 1.48 2.11 1.98 5.01

1997 1.90 3.30 1.90 2.50 1.99 7.08

Mg 1994 2.00 4.36 3.00 2.64 3.46 1.56

1995 1.53 5.22 5.29 4.75 3.18 2.60

1996 1.43 5.33 4.04 8.13 9.88 2.36

1997 1.31 5.37 4.00 8.38 8.88 3.75
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treatments, the S recovered in the CEC extract decreased over time in the 0- to

15-cm depth interval, indicating downward movement (Table 4). The S levels

in the 15- to 30-cm depth interval for the CCBP amended plots were higher

than the corresponding values for the check plots (Table 5), supporting the

idea that S was being leached from the profile. The decrease in S over time

was mirrored in similar decreases in exchangeable Ca. It is possible that S

formed ion pairs with the Ca that enhanced its downward movement.

It would appear that the dissolution and movement of S depended on the

form in which it was applied. For example, the S recovered in the CEC extract

for 1994 in the 0- to 15-cm depth interval (Table 4) was about two times higher

for the FGDþDL compared to the FGDþMgO application even though the

amount of S applied as FGD was the same (345.6 g m22) (Table 1). Although

S was applied at a lower rate (239 g m22) with the FBCþMgO (Table l), the S

extracted for 1994 in the 0- to 15-cm depth was about the same as that for the

FGDþMgO amendment.

Similar results as for the previous years are summarized in Table 6 for the

small depth increment samples taken in 1999. These results revealed greater

detail of the effect of the amendments on pH and exchangeable Ca, Mg, Al,

and S in the 0- to 15-cm depth interval than those obtained from the single

sampling over this depth. For comparison, values for check, DL, and

FBCþMgO (Ritchey, Belesky, and Halvorson 2004) are presented. The

most interesting finding from these more detailed samplings was that most

of the treatment effects were restricted to the 0- to 2.5-cm and 2.5- to 5-cm

depths, as discussed (Ritchey, Belesky, and Halvorson 2004). These results

provided more clear evidence of the expected reciprocal effect of pH and

exchangeable Al brought out in the foregoing discussion. In addition, the

differential effects of the source of the amendments on exchangeable Ca,

Mg, and S and their downward movement in the upper profile were more

clearly defined.

These results for the more detailed sampling of the 0- to 15-cm profile

depth showed that amendment effects on soil pH were most obvious in the

0- to 2.5-cm profile depth and decreased in extent with increasing depth

(Table 7). The extent of pH increase in the 0- to 2.5-cm layer was positively

correlated with total Ca carbonate equivalent (TNE) of the amendments added

(r2 ¼ 0.99).

Because most of the effects of applying the amendments were concen-

trated in the 0- to 15-cm depth interval and primarily in the 0- to 2.5-cm

layer, the results of Table 7 were used to calculate the exchangeable Ca,

Mg, and S recovered in the CEC extract (g m22) in excess of the values in

the check plots (termed the net increase) for the 0- to 2.5-, 2.5- to 5-, 5- to

10-, and 10- to 15-cm depth intervals. The resulting values were considered

as the net effect of the treatments on exchangeable Ca, Mg, and S that

resulted from the application of the amendments. The total net effect (g

m22) was obtained by summing the net values over the individual 0- to 15-

cm depth intervals weighted by bulk density.

X. Zhou et al.1258
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The results (Table 8) confirmed that most of the amendment effects on

exchangeable Ca was concentrated in the upper 0- to 5-cm depth. In the DL

and MgO treatments, the 0- to 5-cm layers accounted for close to 90% of

the net total increase in exchangeable Ca for the 0- to 15-cm depth.

Previous research also showed that residual limestone from surface appli-

cations tended to be found as an unreactive thin layer at the soil surface

with major presence in the 0–2-cm depth (Allen and Hossner 1991). The

net total increase in exchangeable Ca (0- to 15-cm layer) for the DL

treatment was only about 30% of the total 98 g m22 applied. It would

appear that most of the Ca applied with calcitic dolomite limestone did not sig-

nificantly influence the amount adsorbed on the soil exchange. The reason for

this may be that the CaCO3 moiety of calcitic dolomite limestone was

sparingly soluble, given that the solubility product of pure CaCO3 is

4.96 � 1029. There was no significant difference of net increase of exchange-

able Ca between DL and FGDþMgO treatments in the 0- to 15-cm depth,

although the applied Ca of the latter was nearly four times greater than that

of the former, probably because the high solubility of the gypsum in the

FGDþMgO treatment resulted in its removal from the profile by leaching.

The net total exchangeable Mg recovered from the FBCþMgO

treatment was much lower than that from other treatments (Table 8). This

might be explained by the high level of exchangeable Ca in the

Table 8. Amount of Ca, Mg, and S (gm22) recovered in CEC extracts on 1999

samples less the amounts found in check plots

Element

Depth

(in) DL MgO

FGDþ

DL

FGDþ

MgO

FBCþ

MgO LSD0.05

Ca 0–2.5 23.56 8.91 37.44 16.14 65.02 20.71

2.5–5 4.72 3.43 13.96 6.78 27.13 11.25

5–10 2.40 0.50 18.30 7.94 18.96 14.54

10–15 1.46 1.04 14.88 5.74 12.88 8.50

Integral 32.14 13.88 84.58 36.6 123.99 50.60

Mg 0–2.5 3.50 3.16 3.04 2.79 0.29 1.82

2.5–5 1.49 1.85 1.13 1.04 0.19 0.72

5–10 2.06 2.36 1.26 1.18 2 0.04 1.22

10–15 1.78 2.74 0.72 0.70 2 0.18 1.16

Integral 8.83 10.11 6.15 5.71 0.26 4.48

S 0–2.5 20.55 20.22 20.47 20.35 2 0.02 0.31

2.5–5 20.26 20.03 20.25 20.13 2 0.31 0.39

5–10 20.22 20.40 0.66 0.76 1.08 0.74

10–15 20.28 0.20 1.46 1.62 1.46 1.70

Integral 21.31 20.45 1.40 1.90 2.21 2.97

Note: For comparison, values for FGDþMgO and DL, as calculated from Ritchey

et al. (2004), are given.
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FBCþMgO treatment and competition on the exchange sites between Ca and

Mg (Table 8). There were no significant differences in exchangeable Mg

among other treatments. In the DL treatment 80% of the net total exchange-

able Mg recovered was from the 0- to 10-cm depth, and the entire 0- to 15-

cm depth accounted for only 17% of the total Mg applied. In contrast, 38%

of the Mg was recovered in exchangeable form for the MgO treatment

(Tables 1 and 8). The solubility product for pure MgCO3 is 6.82 � 1026,

which is evidence that, although still sparingly soluble, the MgCO3 moiety

of dolomitic limestone may have been more soluble and therefore more

mobile than the CaCO3 moiety. The distribution of exchangeable Ca and

Mg over the small depth increments in the 0- to 15-cm portion of the

profile tends to support the idea that both exchangeable Ca and exchangeable

Mg from applied calcitic dolomite tended to be located in the upper layer of

the soil profile; the former more so than the latter.

The exchangeable Ca from the CCBP amendments also tended to be

found in the upper 0- to 10-cm depth of the 0- to 15-cm profile (Table 8).

The amounts of Ca applied for the CCBP treatments were in the ratio

4:5:6.5 of FGDþMgO:FGDþDL:FBCþMgO, and the net increases in

exchangeable Ca in the 0- to 2.5-cm and 2.5- to 5.0-cm depth intervals

were significantly higher for the treatments where more Ca was applied.

However, the differences were not significant for the 5- to 10-cm and 10- to

15-cm depths. The 0- to 10-cm depth accounted for 80 to 90% of the net

total increase of exchangeable Ca in the top 15 cm of the profile for the

CCBP treatments. On the other hand, the net total increase of exchangeable

Ca in the 0- to 15-cm depth represented 10, 18, and 20% of the Ca applied as

FGDþMgO, FGDþDL, and FBCþMgO, respectively (Tables 1 and 8).

In the FGDþDL treatment, 1.25 times more Ca was applied than in the

FGDþMgO treatment, but the net total increase in exchangeable Ca in the

0- to 15-cm depth was more than doubled. Where more of the Ca added was

in the form of gypsum, which is more soluble, it is reasonable that less of the

Ca was retained in the exchangeable form. The solubility product of pure

CaSO4 is 7.10 � 1025, indicating that gypsum is more soluble than either

CaCO3 or MgCO3 and could more readily leach from the profile.

The FBCþMgO amendment supplied 32 g m22 of Mg compared to

27 g m22 for the MgO and FGDþMgO applications (Table 1), yet in the

0- to 2.5-cm and 2.5- to 5.0-cm depths the net increase in exchangeable Mg

was an order of magnitude less for FBCþMgO (0.48 g m22) than the other

two treatments (5.01 g m22 and 3.83 g m22) (Table 8). The net increases

were almost zero in the 5- to 10- and 10- to 15-cm depth. It is not clear why

the presence of FBC in conjunction with MgO was so much different from

MgO applied alone or FGDþMgO. In the FGDþDL and DL treatments,

the net total increase of exchangeable Mg recovered in the 0- to 15-cm

depth represented 12 and 17%, respectively, of the amount applied (Tables 1

and 8). It was much more variable for the remaining treatments (38, 21, and

1%, respectively, for the MgO, FGDþMgO, and FBCþMgO applications).

X. Zhou et al.1260
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S was applied only with the CCBP amendments. The results for S

recovered in the CEC extract for the 1999 samples (Table 6) indicated S

increasing with depth but not by very much. These data support the results

noted in Table 4 for the 0- to 15-cm depth, indicating that S tended to

decrease over time for the CCBP treatments. In addition, the net total

increase in S over the 0- to 15-cm depth for these treatments (Table 8)

indicated that less than 1% of the applied S remained in this depth as

discussed (Ritchey, Belesky, and Harlvorson 2004). This would be

expected, because soils would not retain S as SO4
22 to any marked degree.

As discussed, the net increase of exchangeable Ca, Mg, and S accounted

for low percentages of the amounts that were applied (Table 1). It was possible

that the remainder was present as nonexchangeable species in the soil. If this

were the case, it would be reasonable to expect that these species would be

extracted with 0.1 M HCl. From the data presented in Table 9, it was calcu-

lated that the net increases of Ca recovered in the HCl extracts for the 0- to

2.5-cm plus the 2.5- to 5-cm depth intervals were 430%, 330%, and 270%,

respectively, of the net increases in exchangeable Ca (Table 8) for the

FGDþDL, FGDþMgO, and FBCþMgO applications. These amounts

accounted for 45%, 20%, and 40%, respectively, of total applied Ca

(Table 1) for these three treatments. For the 0- to 2.5-cm plus the 2.5- to

5-cm depth samples, the net increase of HCl-extractable Ca (115.23 g m22)

with the DL application was not significantly different than the applied

amount of 97.7 g m22 (Tables 1 and 9). The 95% confidence interval of net

increase of HCl-extractable Ca for DL treatment was 59.58 g m22, 170.88

g m22, based on the replications. The net increases in HCl-extractable Mg

and S were also markedly greater than the corresponding net increases in

exchangeable Mg and S for all treatments (Table 9). The results in Table 9

also supported the finding that much of the applied amendments remained

in the upper 0- to 5-cm depth interval of the profile.

The HCl extracts for the DL treatment were obtained on samples taken

from 1994 through 1997 from the 0- to 15-cm depth. Values of mean soil

Ca content in the HCl extract for 1994 to 1997 were 5.3, 7.3, 7.6, and

Table 9. Amount of Ca, Mg, and S (g m22) in HCl extracts on 0- to 2.5-cm and 2.5- to

5-cm depth samples (1999) less the amounts present in the check plots

Element

Depth

(cm) DL MgO

FGDþ

DL

FGDþ

MgO

FBCþ

MgO LSD0.05

Ca 0–2.5 103.00 21.21 204.98 56.23 211.46 110.07

2.5–5 12.23 4.66 17.70 19.07 41.14 23.47

Mg 0–2.5 36.83 6.17 81.31 9.88 6.16 42.92

2.5–5 3.62 4.25 4.47 2.52 0.82 3.46

S 0–2.5 0.11 0.46 0.94 0.82 5.30 3.61

2.5–5 20.05 0.23 0.42 0.65 0.87 0.57
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6.6 cmolc kg
21. Corresponding values for Mg were 3.9, 5.5, 5.5, and 4.4 cmolc

kg21, and 0.24, 0.29, 0.26, and 0.27 cmolc kg
21 for S. None of these values

were significantly different between years. The Ca, Mg, and S contents of

these extracts were compared to the values in the CEC extract on these

samples given in Table 4. The Ca and Mg values were about three to four

times higher than the values for the CEC extracts (data not shown). These

results indicated that the ratio between these extracts remained fairly

constant over time, implying that the Ca and Mg that appeared in exchange-

able form must have been released from the limestone and sorbed on soil

minerals early in the first year. We assume that thereafter the slowly soluble

material in the applied amendments persisting in the soil continued to

replenish any leaching or plant uptake losses of exchangeable Ca and Mg.

When the CEC-extractable Ca and Mg were subtracted from the correspond-

ing values extracted by HCl, the differences may be assumed to be the inactive

component remaining in the soil. For some reason, these parts of the Ca and

Mg sources were hard to dissolve and move. The Ca/Mg ratios (g g21) in

the inactive form were 1.86, 1.90, 1.92, and 1.97 from 1994 through 1997.

Those ratios were very close to the Ca/Mg ratio in the applied dolomitic

limestone, which was 1.91 (Table 1). This implied that such inactive

component might be the original dolomitic limestone particles, probably of

relatively large size.

Plant mineral concentrations and forage dry yields were determined from

1994 through 1999. The net amount of Ca and Mg taken up by plants in each

year depended on the yield and plant mineral concentrations for that year. In

proportion to the higher soil Ca, a greater amount of Ca was taken up for the

FBCþMgO (Table 10). However, the proportion of plant uptake of Ca

summed from 1994 through 1999 to the total applied Ca (Table 1) was low,

and there were no large differences in this proportion between treatments,

as illustrated by the values of 1.39%, 1.30%, and 1.43% for FGDþDL,

FGDþMgO, and FBCþMgO, respectively. The proportion of the

summed plant uptake of Mg from 1994 through 1999 to total applied Mg

was much higher than that of Ca (Tables 1 and 10). The MgO treatment

was most effective with a percentage of 13.7%.

Unpublished data (K. D. Ritchey and C. Feldhake collected on Nov. 8,

1995, and Jul. 27, 1996, from replicated soil solution ceramic lysimeters)

was used to estimate the amount of annual Ca leaching from treatment

FGDþGL. In a treatment that received only DL, the soil solution collected

at the 15-cm depth contained an average of 7mg kg21 Ca (+SD of 3.6). In

a treatment that received 32,000 kg ha21 gypsum and DL, the soil solution

contained an average of 317mg kg21 (+SD of 78) Ca. Assuming a linear

relationship between soil solution Ca and amount of gypsum added, we

estimated that the treatment FGDþDL would have 155mg kg21 Ca. The

assumption that the relationship was linear was supported by measured

values of 92mg kg21 from treatments receiving 8000 kg ha21 gypsum (but

no DL), which was within 14mg kg21 of the predicted value (78mg kg21)

X. Zhou et al.1262
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Table 10. Amount of Ca and Mg (g m22) taken up by plants for various years from 1994 to 1999 less the amount for the check plots

Element Year DL MgO FGDþDL FGDþMgO FBCþMgO LSD0.05

Ca 1994 0.01 20.11 1.47 1.35 1.31 1.32

1995 0.04 20.06 0.60 0.57 0.55 1.02

1996 0.42 20.30 1.46 1.09 1.91 0.70

1997 1.29 0.02 2.10 1.31 3.48 1.52

1998 0.17 20.02 0.36 0.27 0.62 0.19

1999 0.50 0.05 0.65 0.37 1.00 0.11

Sum 2.42 20.41 6.64 4.95 8.87

% of applied 2.48 1.39 1.30 1.43

Mg 1994 0.14 0.22 0.02 20.04 0.01 0.16

1995 0.09 0.09 0.09 0.06 0.10 0.15

1996 0.79 1.02 0.51 0.50 0.52 0.51

1997 1.55 1.63 0.96 0.67 0.93 0.80

1998 0.28 0.37 0.16 0.14 0.15 0.11

1999 0.49 0.35 0.31 0.19 0.31 0.07

Sum 3.35 3.68 2.06 1.52 2.02

% of applied 6.54 13.7 3.99 5.59 6.25
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based on the assumed linear relationship. If the value of 155mg kg21 is repre-

sentative of soil solution during the entire year and one-third of 1042mm of

annual precipitation leached through the profile, then the amount of Ca that

could have leached annually from treatment FGDþDL during the early

years of the experiment was estimated as 54 g m22. This represents an

annual loss of 11% of the amount that was applied to treatment FGDþDL.

In summary, the results indicated little dissolution and movement of the

applied Ca and Mg except where large sulfate components were present.

However, sufficient dissolution occurred to produce increases in exchangeable

Ca and Mg and decreases in exchangeable Al that were reflected in corre-

sponding increases in soil pH. These beneficial effects tended to persist over

time but were mostly confined to the upper 0- to 15-cm depth of the profile.

These effects may continue for many years (Beckie and Ukrainetz 1996).

The greatest benefits appeared to be in the upper 0- to 5-cm surface layer.

Both Ca and Mg in calcitic dolomite tended to be immobilized in the upper

0- to 5-cm layer of the soil profile; the former more so than the latter.

Amendment Effects on Soil Physical Properties over Small Depth

Increments

Measurements of dry bulk density (rb in g cm23), saturated hydraulic

conductivity (Ksat in cm hr21), and plant-available water (PAW in cm water

cm21 profile) measured over small depth increments of the profile showed

that significant effects, if any, of the amendments were confined to the

upper 0- to 15-cm layer of the profile (Table 11). This was expected,

because soil physical properties are to varying degrees influenced by the

soil chemical properties.

The amendments had little effect on the dry bulk density, although liming

materials are generally considered to enhance aggregation, thus reducing bulk

density. However, silt-sized fractions dominated the uppermost layers of the

profile (Table 3), and these fractions generally are less affected by the floccu-

lating potential of divalent cations. In addition, the amount of CaþMg

needed to reduce bulk density may be much more than was applied to the

experimental plots. The highest total CaþMg addition was about 640 gm22

for the FBCþMgO treatment (Table 1). The mass of soil in the 0- to

2.5-cm depth per m2 would be close to 28 kg based on a bulk density of

1.1 g cm23 measured for the check plots (Table 11). This translates to about

2.2% by weight of CaþMg, and it appears that this was not sufficient to

markedly influence bulk density.

The effects of the amendments on Ksat were more pronounced (Table 11),

especially in the 0- to 5-cm depth. However, this effect did not persist with

increasing depth except for the FGDþMgO application. The KSat tended to

fall rapidly with depth to less than 2 cm h21, which is considered to be a mod-

erately low to low value for agricultural soils (Barnhisel and Bertsch 1982).

X. Zhou et al.1264
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Table 11. Treatment effects on soil profile dry bulk density, saturated hydraulic conductivity, and plant-available water

Property Depth (cm) Check DL MgO FGDþDL FGDþMgO FBCþMgO LSD0.05

rb (g cm23) 0–5 1.12 1.09 1.19 1.10 1.16 1.20 0.08

5–10 1.43 1.38 1.37 1.39 1.38 1.43 0.04

10–15 1.54 1.47 1.49 1.53 1.45 1.44 0.06

15–20 1.61 1.58 1.58 1.62 1.57 1.53 0.09

25–30 1.71 1.65 1.71 1.70 1.69 1.64 0.08

30–35 1.79 1.74 1.71 1.79 1.71 1.68 0.07

Ksat (cm hr21) 0–5 12.81 24.54 42.07 36.27 25.31 49.59 16.49

5–10 6.47 5.82 9.99 9.89 6.12 1.49 6.34

10–15 0.26 0.62 0.97 1.28 3.93 0.20 1.87

15–20 0.06 0.25 0.29 1.49 0.44 0.38 0.96

25–30 0.01 0.09 0.02 0.06 0.03 0.00 0.96

30–35 0.03 0.20 0.00 0.20 0.45 0.22 0.16

PAW (cm

water per cm

profile)

0–2.5 0.19 0.11 0.17 0.12 0.20 0.16 0.04

2.5–5 0.16 0.12 0.14 0.18 0.27 0.14 0.03

7.5–10 0.14 0.11 0.17 0.19 0.23 0.16 0.02

12.5–15 0.09 0.13 0.16 0.17 0.16 0.16 0.02

17.5–20 0.12 0.11 0.16 0.17 0.16 0.16 0.03

25–27.5 0.10 0.10 0.15 0.12 0.12 0.15 0.02
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As was the case for bulk density, the amendments appeared to have little

or no significant effect on the PAW. The PAWwas defined as the difference in

retention between 0.03 and 1.5MPa tension as measured in the pressure

membrane apparatus. Increasing PAW would imply significantly increasing

the microporosity. However, the texture (Table 3) of the upper layers of the

soil at the experimental field was dominated by the sand- and silt-sized

fractions, and the Ca and Mg either leached so rapidly that little residual

was present 6 years after application or did not move to the lower and more

clayey layers to produce any significant effect on the PAW.
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